[1] L. Chen, B. Wen, J. Du, J. Zhang, C. Zhang, and W. Wang, A polymer-based embedded silicon fan-out packaging (P-eSiFO) method for high density chiplet packaging, IEEE Trans Compon Packaging Manuf Technol, 2023, https://doi.org/10.1109/TCPMT.2023.3321058

[2] Yechang Guo, Shaofeng Wang, Peiyue Li, Pan Zhang, and Wei Wang*, Rapid Colloidal Gold Immunoassay for Pharmacokinetic Evaluation of Vancomycin in the Cerebrospinal Fluid and Plasma of Beagle Dogs, Sensors, 2023, 23(21): 8978. https://doi.org/10.3390/s23218978

[3] Han Xu#, Zhou Yang#, Yechang Guo, Qingmei Xu, Songtao Dou, Pan Zhang, Yufeng Jin, Jiajie Kang*, Wei Wang*, Copolymerization of Parylene C and Parylene F to Enhance Adhesion and Thermal Stability without Coating Performance Degradation, Polymers, 2023, https://doi.org/10.3390/polym15051249

[4] Zheng Liu, Jixin Zhang, Ningyu Wang, Yun’ai Feng, Fei Tang, Tingyu Li, Liping Lv, Haichao Li, Wei Wang*, Yaoping Liu*, Enhanced YOLOv5 network-based object detection (BALFilter Reader) promotes PERFECT filter-enabled liquid biopsy of lung cancer from bronchoalveolar lavage fluid (BALF), Microsystems&Nanoengineering, 2023, https://doi.org/10.1038/s41378-023-00580-6

[5] Du Jianyu, Tang Rui, Zhang Xiaoyu, Yang Yuchi, Zhang Tiebin, Lu Peijue, Zhang Deyin, Yang Yudong, Zhang Chi, Ji Feng, Yu Huaiqiang, Zhang Jinwen, Wang Wei.Research Progress ofDiamond-Based Advanced Thermal Management Technology*[J]. Electronics&Packaging, 2023, 23(3): 030107 .


[6] Xu, H., Zhang, M., Chen, L., Zhang, P., Jin, Y., & Wang, W*. (2022). Silicon-Based Stretchable Structure via Parylene Kirigami Interconnection. Journal of Microelectromechanical Systems. https://doi.org/10.1109/JMEMS.2022.3223059

[7] Yang, Y., Du, J., Li, M., Li, W., Wang, Q., Wen, B., ... & Wang, W*. (2022). Embedded microfluidic cooling with compact double H type manifold microchannels for large-area high-power chips. International Journal of Heat and Mass Transfer, 197, 123340. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123340

[8] Gao, X., Li, P., Yang, Z., An, L., Wang, Z., Guo, J., ... & Wang, W*. (2022). Liquid Metal-Based Microfluidic Metasurface for Controllable Electromagnetic Wave Reflection Attenuation. IEEE Journal of the Electron Devices Society, 10, 898-906. https://doi.org/10.1109/JEDS.2022.3194120

[9] Chen, L., Xu, H., Han, X., Li, P., Zhang, P., Zhao, H., ... & Wang, W*. (2022). Optimized chemical mechanical polishing of Parylene C for high-density wiring in flexible electronics. Flexible and Printed Electronics, 7(3), 035007. https://doi.org/10.1088/2058-8585/ac82fb

[10] Chen, L., Xu, H., Li, T., Zhang, M., Han, X., Jin, Y., & Wang, W.* (2022). Adhesion enhancement strategy for Parylene C substrate by nanograss technique. Journal of Micromechanics and Microengineering, 32(4), 044005. https://doi.org/10.1088/1361-6439/ac57ae

[11] Hun, T., Zhang, Y., Xu, Q., Huang, D., Wang, Q., Li, Z., & Wang, W.*(2022). In Situ Electroporation on PERFECT Filter for High-Efficiency and High-Viability Tumor Cell Labeling, Micromachines, 13(5), 672. https://doi.org/10.3390/mi13050672


[12] Liu, Y., Xu, H., Li, T., & Wang, W.* (2021). Microtechnology-enabled filtration-based liquid biopsy: challenges and practical considerations. Lab on a chip, 21(6), 994-1015. https://doi.org/10.1039/D0LC01101K


[13] Hun, T., Liu, Y., Guo, Y., Sun, Y.*, Fan, Y.*, & Wang, W.* (2020). Highly efficient and controllable cell alignment and spreading with a micropore array based solid lift-off method. Microsystems & Nanoengineering, 6(86). https://doi.org/10.1038/s41378-020-00191-5

[14] Li, T., Liu, Y., Zhang, W., Lin, L., Zhang, J., Xiong, Y., Nie, L., Liu, X., Li, H.*, & Wang, W.* (2020). A rapid liquid biopsy of lung cancer : separation and detection of exfoliated tumor cells from bronchoalveolar lavage fluid with dual-layer “ PERFECT ” filter Introduction. Theranostics, 10(14), 1–16. https://doi.org/10.7150/thno.44274

[15] Liu, F.-F., Guo, Y.-C., Wang, W.*, Chen, Y.-M., & Wang, C.* (2020). In situ synthesis of a MOFs/PAA hybrid with ultrahigh ionic current rectification. Nanoscale, 22–26. https://doi.org/10.1039/d0nr01054e


[16] Jiang, X., Zhao, R., Chang, W., Yin, D., Guo, Y., Wang, W., Liang, D., Yang, S.*, Shi, A.*, & Chen, E.* (2019). Highly Ordered Sub-10 nm Patterns Based on Multichain Columns of Side-Chain Liquid Crystalline Polymers. Macromolecules, 52(13), 5033–5041. https://doi.org/10.1021/acs.macromol.9b00910

[17] Liu, Y., Li, T., Xu, M., Zhang, W., Xiong, Y., Nie, L., Wang, Q.*, Li, H.*, & Wang, W*. (2019). A high-throughput liquid biopsy for rapid rare cell separation from large-volume samples. Lab on a Chip, 19(1), 68–78. https://doi.org/10.1039/c8lc01048j [Backside cover]

[18] Zhou, W., Liu, Y., Ran, M., Zhao, X., Li, H.*, Li, H.*, & Wang, W.* (2019). Rapid liquid biopsy for Mohs surgery: rare target cell separation from surgical margin lavage fluid with a high recovery rate and selectivity. Lab on a Chip, 19(6), 974–983. https://doi.org/10.1039/c8lc01335g [Backside cover]


[19] Dong, X., Zhang, M., Lei, Y., Li, Z., Jin, Y., & Wang, W.* (2018). Parylene-MEMS technique-based flexible electronics. Science China Information Sciences, 61(6). https://doi.org/10.1007/s11432-018-9430-2

[20] Liu, Y., Kang, D., Dai, W., Li, H., Wang, W.*, & Tai, Y. C.* (2018). Highly controllable and reliable ultra-thin Parylene deposition. Micro and Nano Systems Letters, 6(1), 2–8. https://doi.org/10.1186/s40486-018-0067-0

[21] Liu, Y., Xu, H., Dai, W., Li, H.*, & Wang, W.* (2018). 2.5-Dimensional Parylene C micropore array with a large area and a high porosity for high-throughput particle and cell separation. Microsystems and Nanoengineering, 4(1). https://doi.org/10.1038/s41378-018-0011-8

[22] Liu, Y., Xu, H., Zhang, L., & Wang, W.* (2018). Microfabrication of micropore array for cell separation and cell assay. Micromachines, 9(12). https://doi.org/10.3390/mi9120620

[23] Pi, Y., Chen, J., Miao, M., Jin, Y., & Wang, W.* (2018). A fast and accurate temperature prediction method for microfluidic cooling with multiple distributed hotspots. International Journal of Heat and Mass Transfer, 127, 1223–1232. https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.127

[24] Pi, Y., Wang, N., Chen, J., Miao, M., Jin, Y., & Wang, W.* (2018). Anisotropic equivalent thermal conductivity model for efficient and accurate full-chip-scale numerical simulation of 3D stacked IC. International Journal of Heat and Mass Transfer, 120, 361–378. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.044

[25] Zhang, L., Liu, Y., Li, Z., & Wang, W.* (2018). SF6 optimized O2 plasma etching of parylene C. Micromachines, 9(4), 1–10. https://doi.org/10.3390/mi9040162

[26] Zhang, L., Wei, M., Shao, L., Li, M., Dai, W., Cui, Y., Li, Z., Zhang, C.*, & Wang, W.* (2018). Enhanced parylene-C fluorescence as a visual marker for neuronal electrophysiology applications. Lab on a Chip, 18(23), 3539–3549 https://doi.org/10.1039/c8lc00804c [Backside cover]


[27] Lee, W., Yoo, S., Jung, J., Kang, W., Wang, W., Moon, C., & Choi, H. (2017). All-in-one low-intensity pulsed ultrasound stimulation system using piezoelectric micromachined ultrasonic transducer (pMUT) arrays for targeted cell stimulation. Biomedical Microdevices, 19(4). https://doi.org/10.1007/s10544-017-0228-6

[28] Lin, M., Chen, Q., Wang, Z., Fang, Y., Liu, J., Yang, Y., Wang, W., Cai, Y.*, & Huang, R. (2017). Flexible polymer device based on parylene-C with memory and temperature sensing functionalities. Polymers, 9(8), 1–9. https://doi.org/10.3390/polym9080310

[29] Liu, X., Liu, Y., Zhao, F., Hun, T., Li, S., Wang, Y., Sun, W., Wang, W., Sun, Y.*, & Fan, Y.* (2017). Regulation of cell arrangement using a novel composite micropattern. Journal of Biomedical Materials Research - Part A, 105(11), 3093–3101. https://doi.org/10.1002/jbm.a.36157

[30] Ouyang, W., Han, J.*, & Wang, W.* (2017). Enabling electrical biomolecular detection in high ionic concentrations and enhancement of the detection limit thereof by coupling a nanofluidic crystal with reconfigurable ion concentration polarization. Lab on a Chip, 17(22), 3772–3784. https://doi.org/10.1039/c7lc00722a [Outside front cover]

[31] Ouyang, W., Han, J., & Wang, W.* (2017). Nanofluidic crystals: Nanofluidics in a close-packed nanoparticle array. Lab on a Chip, 17(18), 3006–3025. https://doi.org/10.1039/c7lc00588a

[32] Wang, X., Ren, L., Su, Y., Ji, Y., Liu, Y., Li, C., Li, X., Zhang, Y., Wang, W., Hu, Q., Han, D., Xu, J., & Ma, B. (2017). Raman-Activated Droplet Sorting (RADS) for Label-Free High-Throughput Screening of Microalgal Single-Cells. Analytical Chemistry, 89(22), 12569–12577. https://doi.org/10.1021/acs.analchem.7b03884


[33] Liu, Y., Zhang, L., Mo, C., Cao, Y., Wu, W., & Wang, W.* (2016). Caulking polydimethylsiloxane molecular networks by thermal chemical vapor deposition of Parylene-C. Lab on a Chip, 16(21), 4220–4229. https://doi.org/10.1039/c6lc01086e

[34] Liu, Y., Zhang, L., Wu, W., Zhao, M., & Wang, W.* (2016). Restraining non-specific adsorption of protein using Parylene C-caulked polydimethylsiloxane. Biomicrofluidics, 10(2). https://doi.org/10.1063/1.4946870

[35] Xu, J., Lei, Z., Guo, J., Huang, J., Wang, W.*, Reibetanz, U., & Xu, S.* (2016). Trapping and Driving Individual Charged Micro-particles in Fluid with an Electrostatic Device. Nano-Micro Letters, 8(3), 270–281. https://doi.org/10.1007/s40820-016-0087-3

[36] Yang, M., Cao, B. Y.*, Wang, W.*, Yun, H., & Chen, B. (2016). Experimental study on capillary filling in nanochannels. Chemical Physics Letters, 662, 137–140. https://doi.org/10.1016/j.cplett.2016.09.016

[37] Zhao, W., Wang, B., & Wang, W.* (2016). Biochemical sensing by nanofluidic crystal in a confined space. Lab on a Chip, 16(11), 2050–2058. https://doi.org/10.1039/c6lc00416d [Outside front cover]


[38] Liu, J.*, Wang, L., Ouyang, W., Wang, W.*, Qin, J., Xu, Z., Xu, S., Ge, D., Wang, L., Liu, C., & Wang, L. (2015). Fabrication of PMMA nanofluidic electrochemical chips with integrated microelectrodes. Biosensors and Bioelectronics, 72, 288–293. https://doi.org/10.1016/j.bios.2015.05.031

[39] Rosentsvit, L., Wang, W., Schiffbauer, J., Chang, H. C., & Yossifon, G. (2015). Ion current rectification in funnel-shaped nanochannels: Hysteresis and inversion effects. Journal of Chemical Physics, 143(22). https://doi.org/10.1063/1.4936915

[40] Shao, L., Zheng, M., & Wang, W.* (2015). Doping electrolyte by charged nanoparticles. Applied Physics Letters, 106(9). https://doi.org/10.1063/1.4913971

[41] Shi, T., Wang, X., Wang, B., Wang, W.*, Yang, X., Yang, W., Chen, Q., Xu, H., Xu, S.*, & Yang, T.* (2015). Nanoscale opening fabrication on Si (111) surface from SiO2 barrier for vertical growth of III-V nanowire arrays. Nanotechnology, 26(26), 265302. https://doi.org/10.1088/0957-4484/26/26/265302


[42] Liu, K., Pi, Y. D., Wang, W.*, Li, Z. H., Chen, J., & Jin, Y. F. (2014). A preliminary experimental validation of superposition strategy in thermal management of integrated circuit with multiple hot-spots. Science China Technological Sciences, 57(11), 2138–2143. https://doi.org/10.1007/s11431-014-5645-7

[43] Ouyang, W., & Wang, W.* (2014). Fabrication and characterization of sub-100/10 nm planar nanofluidic channels by triple thermal oxidation and silicon-glass anodic bonding. Biomicrofluidics, 8(5), 052106. https://doi.org/10.1063/1.4894160

[44] Zhang, R., Huang, J., Xie, F., Wang, B., Chu, M., Wang, Y., Li, H., Wang, W.*, Zhang, H., Wu, W., & Li, Z. (2014). Microfluidic sterilization. Biomicrofluidics, 8(3). https://doi.org/10.1063/1.4882776


[45] Duan, C.*, Wang, W.*, & Xie, Q. (2013). Review article: Fabrication of nanofluidic devices. In Biomicrofluidics, 7(2). https://doi.org/10.1063/1.4794973

[46] Ouyang, W., Wang, W.*, Zhang, H., Wu, W., & Li, Z. (2013). Nanofluidic crystal: A facile, high-efficiency and high-power-density scaling up scheme for energy harvesting based on nanofluidic reverse electrodialysis. Nanotechnology, 24(34). https://doi.org/10.1088/0957-4484/24/34/345401

[47] Sang, J., Du, H., Wang, W.*, Chu, M., Wang, Y., Li, H., Alice Zhang, H., Wu, W., & Li, Z. (2013). Protein sensing by nanofluidic crystal and its signal enhancement. Biomicrofluidics, 7(2). https://doi.org/10.1063/1.4802936

[48] Xie, F., Wang, B., Wang, W.*, Dong, T., Tong, J., Xia, S., Wu, W., & Li, Z. (2013). Continuous flowing micro-reactor for aqueous reaction at temperature higher than 100 °C. Biomicrofluidics, 7(3). https://doi.org/10.1063/1.4807463


[49] Xie, Q., Zhou, Q., Xie, F., Sang, J., Wang, W.*, Zhang, H. A., Wu, W., & Li, Z. (2012). Wafer-scale fabrication of high-aspect ratio nanochannels based on edge-lithography technique. Biomicrofluidics, 6(1). https://doi.org/10.1063/1.3683164


[50] Cui, S., Liu, Y., Wang, W.*, Sun, Y.*, & Fan, Y.* (2011). A microfluidic chip for highly efficient cell capturing and pairing. Biomicrofluidics, 5(3). https://doi.org/10.1063/1.3623411

[51] Lei, Y., Liu, Y., Wang, W.*, Wu, W., & Li, Z. (2011). Studies on Parylene C-caulked PDMS (pcPDMS) for low permeability required microfluidics applications. Lab on a Chip, 11(7), 1385–1388. https://doi.org/10.1039/c0lc00486c

[52] Li, Y., Xie, Q., Wang, W.*, Zheng, M., Zhang, H., Lei, Y., Zhang, H. A., Wu, W., & Li, Z. (2011). Parylene C-on-photoresist (POP): A low temperature spacer scheme for polymer/metal nanowire fabrication. Journal of Micromechanics and Microengineering, 21(6). https://doi.org/10.1088/0960-1317/21/6/067001

[53] Pan, T., & Wang, W. (2011). From cleanroom to desktop: Emerging micro-nanofabrication technology for biomedical applications. Annals of Biomedical Engineering, 39(2), 600–620. https://doi.org/10.1007/s10439-010-0218-9


[54] Lei, Y., Wang, W.*, Wu, W., & Li, Z. (2010). Nanofluidic diode in a suspended nanoparticle crystal. Applied Physics Letters, 96(26), 1–4. https://doi.org/10.1063/1.3456563

[55] Lei, Y., Xie, F., Wang, W.*, Wang, H., & Li, Z. (2010). Hybrid microsystem with functionalized silicon substrate and PDMS sample operating microchannel: A reconfigurable microfluidics scheme. Science China Technological Sciences, 53(8), 2272–2277. https://doi.org/10.1007/s11431-010-3175-5

[56] Lei, Y., Xie, F., Wang, W.*, Wu, W., & Li, Z. (2010). Suspended nanoparticle crystal (S-NPC): A nanofluidics-based, electrical read-out biosensor. Lab on a Chip, 10(18), 2338–2340. https://doi.org/10.1039/c004758a

[57] Wang, S., & Wang, W.* (2010). Kinetic characteristics of continuous flow polymerase chain reaction chip: A numerical investigation. Science China Technological Sciences, 53(7), 1967–1972. https://doi.org/10.1007/s11431-010-3096-3

[58] Xie, F., Wang, Y., Wang, W.*, Li, Z., Yossifon, G., & Chang, H. (2010). Preparation of rhombus-shaped micro/nanofluidic channels with dimensions ranging from hundred nanometers to several micrometers. Journal of Nanoscience and Nanotechnology, 10(11):7277-7281.


[59] Chen, Z., Wang, Y., Wang, W.*, & Li, Z. (2009). Nanofluidic electrokinetics in nanoparticle crystal. Applied Physics Letters, 95(10). https://doi.org/10.1063/1.3223774

[60] Chen, Z., Zhao, Y., Wang, W.*, & Li, Z. (2009). Microfluidic patterning of nanoparticle monolayers. Microfluidics and Nanofluidics, 7(4), 585–591. https://doi.org/10.1007/s10404-009-0420-y

[61] Lei, Y., Wang, W.*, Yu, H., Luo, Y., Li, T., Jin, Y., Zhang, H., & Li, Z. (2009). A parylene-filled-trench technique for thermal isolation in silicon-based microdevices. Journal of Micromechanics and Microengineering, 19(3). https://doi.org/10.1088/0960-1317/19/3/035013

[62] Wang, W., Zhao, S., & Pan, T.* (2009). Lab-on-a-print: From a single polymer film to three-dimensional integrated microfluidics. Lab on a Chip, 9(8), 1133–1137. https://doi.org/10.1039/b816287e

[63] Zhao, Y., Jiang, X., Li, C., Wang, W.*, Gao, M., & Li, Z. (2009). RIE of SiO2 nanoparticle and its application in preparation of silicon nanopillar array. Nanotechnology and Precision Engineering, 7(6):515-518.


[64] Wang, W., Zhao, Y., Lei, Y. H., & Li, Z.* (2008). Nanoparticle-based lift-off technique for ultra-thin nanoporous film preparation. Science in China, Series F: Information Sciences, 51(6), 819–824. https://doi.org/10.1007/s11432-008-0055-8

[65] Zhao, S., Wang, W.*, & Li, Z. (2008). Linearity and dissociative antigen noise analyses of competitive microfluidic heterogeneous immunoadsorption. Biomedical Microdevices, 10(4), 519–529. https://doi.org/10.1007/s10544-007-9161-4

[66] Wang, W., & Li, Z.* (2008). Simplified scaling transformation for the numerical simulation of MEMS devices with thin film structures. Chinese Journal of Mechanical Engineering (中国机械工程学报), 21(2), 28-30.

[67] Lei, Y., Wang, W.*, Wang, H.*, & Li, Z. (2008). Experimental studies of silicon inhibition effects on polymerase chain reaction: a real time approach. Chinese Journal of Sensors and Actuators(传感技术学报), 21(2), 203-206.

Before 2008年

[68] Wang, W., Wang, H., Li, Z., & Guo, Z. (2006). Silicon inhibition effects on the polymerase chain reaction: a real-time detection approach. Journal of Biomedical Materials Research A, 77A(1), 28-34.

[69] Wang, W., Li, Z.*, Luo, R., Lv, S., & Yang, Y. (2005). Droplet-Based Micro Oscillating-flow PCR Chip. Journal of Micromechanics and Microengineering, 15, 1369-1377.

[70] Wang, W., Li, Z., & Guo, Z.* (2005). Numerical Simulation of Micro Flow-through PCR Chip. Microscale Thermophysics Engineering, 9(3), 281-293. First International Conference on Microchannels and Minichannels, Rochester, New York, April 24-25, 2003, pp. 425-431.

[71] Wang, W., Wang, H., Li, Z., & Guo, Z.* (2005). Studies of Silicon Inhibition Effects on Polymerase Chain Reaction. China Biotechnology, 25(3), 69-73.

[72] Wang, W., Li, Z.*, & Guo, Z. (2004). Multi-Systems Lumped Heat Capacity Analysis of Micro Chamber PCR Chip. Journal of Engineering Thermophysics, 25(2), 308-311. Proceedings of the National Annual Conference on Heat & Mass Transfer, Beijing, Nov. 1-10, 2003, pp. 669-672.

[73] Wang, W., Ge, F., Li, Z., & Guo, Z.* (2003). Effects of Axial Heat Conduction in the Wall on Convective Heat Transfer in Micro Tube. Journal of Engineering Thermophysics, 24(5), 846-849. Proceedings of the National Annual Conference on Heat & Mass Transfer, Shanghai, Oct. 1-10, 2002, pp. 525-528.

[74] Wang, W., Li, Z., & Guo, Z.* (2003). Numerical Simulation of Rough Surface Effects on Microscale Fluid Flow. Journal of Engineering Thermophysics, 24(1), 85-87. Proceedings of the National Annual Conference on Heat & Mass Transfer, Qingdao, Nov. 1-10, 2001, pp. 117-121.

[75] Wang, W., Li, Z., & Guo, Z.* (2002). Analysis of Thermal Cycling in Micro-PCR Chip. International Journal of Nonlinear Sciences and Numerical Simulation, 3, 233-236. International Conference of Micro and Nano Systems, KunMing, China, July, 2002.